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1. Introduction

One of the most interesting results of modern theoretical physics is its direct relation with

many areas of mathematics like differential geometry. General relativity, for instance, can

be considered mathematically as an application of differential geometry. Once a metric is

given which is compatible with a torsion-free connection and satisfies Einstein’s equations,

the corresponding curvature turns out to be a measure of gravitational interaction. This is

a fascinating result that combines apparently different concepts of geometry and physics,

allowing us to study gravity by measuring the curvature of spacetime. In fact, this result

can conceptually be generalized to include all the field interactions that are known in

nature. The electromagnetic, weak, and strong interactions can classically be described by

using the Minkowski metric and a gauge connection. In all the cases, the resulting gauge

curvature can be considered as a measure of the corresponding field interaction (see, for

instance, [1]).

During the last few decades several attempts have been made in order to introduce

differential geometric concepts in ordinary thermodynamics. Hermann [2] formulated the

concept of thermodynamic phase space as a differential manifold with a natural contact

structure. In the thermodynamic phase space there exists a special subspace of thermo-

dynamic equilibrium states. Weinhold [3] proposed an alternative approach in which in

the space of equilibrium states a metric is introduced ad hoc as the Hessian of the internal

energy. In an attempt to formulate the concept of thermodynamic length, Ruppeiner [4]

introduced a metric which is conformally equivalent to Weinhold’s metric. The study of

the relation between the phase space and the metric structures of the space of equilibrium

states led to the result that Weinhold’s and Ruppeiner’s thermodynamic metrics are not
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invariant under Legendre transformations [5, 6], i.e. the geometric properties of the space

of equilibrium states are different when different thermodynamic potentials are used. This

result clearly contradicts ordinary equilibrium thermodynamics which is manifestly Leg-

endre invariant. Moreover, the question whether the curvature of the space of equilibrium

states can be considered as a measure for thermodynamic interaction remained unanswered.

This was particularly clear in the case of the thermodynamics of black holes where a flat

thermodynamic metric can be transformed into a non-flat metric by means of a Legendre

transformation [7].

Recently, the formalism of geometrothermodynamics (GTD) was developed in order

to unify in a consistent manner the geometric properties of the phase space and the space

of equilibrium states [8]. Legendre invariance plays an important role in this formalism.

In particular, it allows us to derive Legendre invariant metrics for the space of equilibrium

states. It has been shown that there exist thermodynamic metrics which correctly describe

the thermodynamic behavior of the ideal gas and the van der Waals gas. In fact, for the

ideal gas the curvature vanishes whereas for the van der Waals gas the curvature is non-zero

and diverges only at those points where phase transitions take place. Moreover, in the case

of black hole thermodynamics in four dimensions we have shown recently [9] that there

exists a thermodynamic metric with non-vanishing curvature which correctly describes

the thermodynamic properties of those black holes. The main goal of the present work

is to show that for all known asymptotically anti-de Sitter black holes in all dimensions

there exists a thermodynamic metric with non-zero curvature which correctly describes the

structure of phase transitions as dictated by the corresponding heat capacity. Consequently,

our main result is that the curvature of the space of equilibrium states can be used in a

general manner as a measure of the thermodynamic interaction of black holes.

The study of classical gravitational configurations on a background with cosmological

constant has been intensified in the last few years. First, cosmological observations indicate

that a positive cosmological constant could be responsible for the present acceleration of

the Universe. On the other hand, a negative cosmological constant plays a distinguished

role in the conjectured AdS/CFT correspondence, according to which 5-dimensional so-

lutions of Einstein equations with negative cosmological constant can be used to derive

certain statements about quantum field theory in four dimensions. In this context, the

thermodynamic properties of black holes in an AdS background acquire especial impor-

tance since they give information about quantum field theory at non-zero temperature.

Charged, rotating black holes in an AdS background are known explicitly only in four [10]

and five dimensions [11]. Moreover, Reissner-Nordström-AdS and Kerr-AdS black holes

are known in all dimensions [12, 13]. The thermodynamics of these higher dimensional

black holes has been a subject of intensive investigation due to its importance in the con-

text of the AdS/CFT conjecture [14 – 16]. In 2+1 gravity, the BTZ black hole presents

an interesting phase transitions structure [17]. Charged topological AdS black holes and

their phase transitions were analyzed in [18]. One of the interesting results is that all the

intrinsic parameters that characterize black holes in higher dimensions can be treated, with

certain care, as thermodynamic variables of ordinary thermodynamics.

This paper is organized as follows. In section 2 we review the general formalism of
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GTD for black holes in arbitrary dimensions and introduce a Legendre invariant metric in

the thermodynamic phase space which is used to generate the geometric structure of the

space of equilibrium states. In sections 4 and 5 we investigate the structure of the phase

transitions of the Reissner-Nordström AdS and Kerr AdS black holes, respectively, and

show the points where phase transitions occur are characterized by curvature singularities

of the thermodynamic metric. In the final section 7 we discuss our results. Throughout

this paper we use units in which G = c = k
B

= ~ = 1.

2. Geometrothermodynamics

In order to describe a thermodynamic system with n degrees of freedom, we consider in

GTD the thermodynamic phase space which is defined mathematically as a Riemannian

contact manifold (T ,Θ, G), where T is a (2n + 1)−dimensional manifold, Θ is a linear

differential 1-form satisfying the condition Θ ∧ (dΘ)n 6= 0, and G is a non-degenerate,

Legendre invariant metric on T . Here ∧ represents the exterior product, d is the exterior

derivative, and (dΘ)n = dΘ ∧ . . . ∧ dΘ (n−times). The submanifold E ⊂ T defined by

means of a smooth embedding mapping ϕ : E −→ T such that the pullback ϕ∗(Θ) = 0

is called the space of thermodynamic equilibrium states. A Riemannian structure g is

induced naturally in E by means of g = ϕ∗(G). It is then expected in GTD [8] that the

physical properties of a thermodynamic system in a state of equilibrium can be described

in terms of the geometric properties of the corresponding space of equilibrium states E .

To be more specific we introduce in the phase space T the coordinates ZA = (Φ, Ea, Ia)

with A = 0, . . . , 2n, and a = 1, . . . , n. In ordinary thermodynamics, Φ corresponds to the

thermodynamic potential, and Ea and Ia are the extensive and intensive variables, respec-

tively. The fundamental differential form Θ can then be written in a canonical manner

as Θ = dΦ − δabI
adEb, where δab is the Euclidean metric. The metric components in T

can be in general arbitrary C2−functions of the coordinates, i. e., GAB = GAB(ZC). This

arbitrariness is restricted by the condition that G must be invariant with respect to Leg-

endre transformations. This is a necessary condition for our description of thermodynamic

systems to be independent of the thermodynamic potential. This implies that T must be a

curved manifold [8] because the special case of a metric with vanishing curvature turns out

to be non Legendre invariant. Although in general any n−dimensional subset of the set of

coordinates ZA can be used to coordinatize the submanifold E , for the sake of simplicity

we choose the subset Ea as coordinates of E . Then the smooth mapping ϕ : E −→ T is

given in terms of coordinates as ϕ : {Ea} 7−→ ZA = {Φ(Ea), Ea, Ia(Ea)}. Consequently,

the condition ϕ∗(Θ) = 0 can be written as the expressions

dΦ = δabI
adEb ,

∂Φ

∂Ea
= δabI

b , (2.1)

which in ordinary thermodynamics correspond to the first law of thermodynamics and the

conditions for thermodynamic equilibrium, respectively. We see that the specification of

the mapping ϕ includes the specification of the relationship Φ = Φ(Ea) that is nothing

more but the fundamental equation from which all the information about a thermodynamic
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system can be obtained [19]. The second law of thermodynamics is implemented in GTD

as the convexity condition
∂2Φ

∂Ea∂Eb
≥ 0 . (2.2)

To complete our construction we need a metric G. There is a large arbitrariness in the

selection of this metric since at this level it is only demanded that it satisfies the condition

of Legendre invariance. For the sake of simplicity we will use the following choice

G = (dΦ − δabI
adEb)2 + (δabE

aIb)(ηcddEcdId) , ηab = diag(−1, 1, . . . , 1) , (2.3)

where ηab is a pseudo-Euclidean metric in E . This metric is a slight modification of the

metric GII presented in [8] which was used there to generate the simplest Legendre invariant

generalizations of Weinhold’s and Ruppeiner’s thermodynamic metrics. It is easy to show

that the metric (2.3) is invariant with respect to the Legendre transformation [20]

{Φ, Ea, Ia} −→ {Φ̃, Ẽa, Ĩa} (2.4)

Φ = Φ̃ − δabẼ
aĨb , Ea = −Ĩa, Ia = Ẽa , (2.5)

and when “projected” on E by means of g = ϕ∗(G) generates the thermodynamic metric

g =

(

Ec ∂Φ

∂Ec

)(

ηabδ
bc ∂2Φ

∂Ec∂Ed
dEadEd

)

. (2.6)

Once the fundamental equation Φ = Φ(Ea) is known for a given thermodynamic system,

the explicit form of the thermodynamic metric g can easily be computed. If the curvature

of the thermodynamic metric is to be considered as a measure of the thermodynamic inter-

action, the metric (2.6) should be flat only for systems with no thermodynamic interaction.

Moreover, phase transitions associated with divergencies of the thermodynamic interaction

should correspond to curvature singularities. We will see that the metric (2.6) satisfies

these conditions in the case of thermodynamic systems represented by black holes.

3. Four dimensional Kerr-Newman-AdS black hole

In the Einstein-Maxwell theory with cosmological constant Λ, which follows from the action

S
EM

=
1

16π

∫

M4

d4x[−det(gµν)]1/2 (R − FµνFµν − 2Λ) , (3.1)

the most general solution representing a black hole configuration is given by the Kerr-

Newman-AdS solution [10] that in Boyer-Lindquist-like coordinates can be expressed as

ds2 = −∆r

ρ2

(

dt − a sin2 θ

Ξ
dϕ

)2

+
∆θ sin2 θ

ρ2

(

adt − r2 + a2

Ξ
dϕ

)2

+ ρ2

(

dr2

∆r
+

dθ2

∆θ

)

(3.2)

where

∆r = (r2 + a2)

(

1 +
r2

l2

)

− 2mr + q2 , ∆θ = 1 − a2

l2
cos2 θ , (3.3)

ρ2 = r2 + a2 cos2 θ , Ξ = 1 − a2

l2
. (3.4)
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This solution describes the gravitational field of a charged, rotating black hole with cos-

mological constant Λ = −3/l2, where l is the curvature radius of the AdS spacetime. The

electromagnetic potential Aµ is given as

At = −qr

ρ2
, Aϕ =

aqr sin2 θ

ρ2Ξ
(3.5)

with the angular, magnetic component Aϕ that appears as a consequence of the rotation of

the black hole. The horizons are determined by the (positive) roots of the equation ∆r = 0.

In particular, the outer horizon is situated at r = r+ and corresponds to the largest root.

The physical properties of this spacetime can be understood by considering the phys-

ical parameters entering the metric functions. The area of the horizon is a well-defined

geometric parameter A =
∫ √

gϕϕgθθdϕdθ that can easily be calculated at r = r+ and

yields A = 4π(r2
+ + a2)/Ξ. The surface gravity κ can be derived, modulo a trivial additive

constant, from the equation kakb
;a − κkb = 0 evaluated at the horizon for a timelike Killing

vector field ka. In the case under consideration we have that ka∂a = ∂t + Ω∂ϕ, where Ω

is the angular velocity measured by a non-rotating observer at infinity, so that the surface

gravity is given as κ = [3r4
+ + (a2 + l2)r2

+ − (a2 + q2)l2]/[2l2r+(r2
+ + a2)]. The situation is

more complicated in the case of the physical mass (total energy) M , angular momentum

J , and electric charge Q, because these parameters are usually defined for asymptotically

flat spacetimes. For asymptotically AdS spacetimes several definitions are possible and the

issue has been clarified only recently by using the laws of black holes thermodynamics and

the formalism of isolated horizons [15, 16]. It turns out that it is necessary to measure the

angular velocity with respect to an observer which is not rotating at infinity [14]. Then

the computation of the intrinsic physical parameters results in

M =
m

Ξ2
, J =

am

Ξ2
, Q =

q

Ξ
. (3.6)

The connection to thermodynamics arises when one considers the Bekenstein-Hawking

entropy in terms of the horizon area, i.e. S = A/4. It is then easy to derive the generalized

Smarr formula for the KN-AdS black hole

M2 = J2

(

1

l2
+

π

S

)

+
S3

4π3

(

1

l2
+

π

S
+

π2Q2

S2

)2

, (3.7)

which is the fundamental thermodynamic equation. It relates the total energy M of the

black hole with the extensive variables S, Q, and J . As in ordinary thermodynamics, in

GTD it is the fundamental equation from which all the thermodynamic information can

be derived. With the choice Ea = {S,Q, J}, the corresponding intensive variables become

Ia = {T, φ,Ω}, where φ is the electric potential and Ω is the angular velocity. Further-

more, with this choice M corresponds to the thermodynamic potential. In this way, we

have introduced all the coordinates ZA = {M,S,Q, J, T, φ,Ω} of the 7-dimensional ther-

modynamic phase space T which, according to eq. (2.3), becomes a Riemannian manifold

with metric

G = (dM − TdS − φdQ − ΩdJ)2 + (ST + φQ + ΩJ) (−dSdT + dQdφ + dJdΩ) . (3.8)
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This is a non-degenerate metric with det(GAB) = (ST + ΩJ + φQ)4/16 and non-zero

curvature. Moreover, the contact structure of T is generated by the fundamental form

Θ = dM − TdS − φdQ − ΩdJ . At the level of the phase space T , the metric (3.8) plays

an auxiliary role in the sense that it generates a Legendre invariant metric for the space of

equilibrium states E with coordinates {Ea}. To this end, we introduce the smooth mapping

ϕ : {S,Q, J} 7−→ {M(S,Q, J), S,Q, J, T (S,Q, J), φ(S,Q, J), Ω(S,Q, J)} (3.9)

by using the fundamental equation (3.7) and the condition ϕ∗(Θ) = 0 so that on E it

corresponds to the first law of black hole thermodynamics dM = TdS + φdQ + ΩdJ .

This, in turn, can be used to compute the dual intensive variables corresponding to the

temperature

T =
∂M

∂S
=

S2

8Mπ3

(

1

l2
+

π

S
+

π2Q2

S2

)(

3

l2
+

π

S
− π2Q2

S2

)

− πJ2

2MS2
, (3.10)

the electric potential,

φ =
∂M

∂Q
=

QS

2Mπ

(

1

l2
+

π

S
+

π2Q2

S2

)

, (3.11)

and angular velocity

Ω =
∂M

∂J
=

J

M

(

1

l2
+

π

S

)

. (3.12)

Moreover, according to eq. (2.6), the metric structure of E is given as

g = (SMS + QMQ + JMJ)







−MSS 0 0

0 MQQ MQJ

0 MQJ MJJ






, (3.13)

where subscripts represent partial derivative with respect to the corresponding coordinate.

Notice that no cross terms of the form gSQ or gSJ appear in this expression, which would

be proportional to MSQ or MSJ , respectively. This is due to the special choice of the

auxiliary metric (3.8). Indeed, the minus sign in front of the term dSdT in G leads to the

disappearance of the cross terms of g = ϕ∗(G) that involve the coordinate S, i. e., gSJ and

gSQ. Our choice of G is in agreement with the condition of Legendre invariance and was

inspired by inspecting the expression of the scalar curvature R. In fact, R always contains

the determinant of the metric g in the denominator and, therefore, the zeros of det(g)

could lead to curvature singularities (if those zeros are not canceled by the zeros of the

numerator). On the other hand, as we will show below, the locations of the divergencies of

the heat capacity coincide with the zeros of MSS. Then, the choice of the metric (3.8) has

the purpose of generating a metric g whose determinant is proportional to MSS, leading to

a one-to-one correspondence between the divergencies of the heat capacity and singularities

of the scalar curvature.

In the thermodynamics of black holes, phase transitions must play an important role.

Due to the absence of a realistic, microscopic model for the entropy of black holes, a problem
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which is related to the absence of a theory of quantum gravity, there is no unanimity about

the definition of phase transitions [21]. Nevertheless, one can adopt the point of view of

ordinary thermodynamics and search for singular points in the behavior of thermodynamic

variables. Such an approach was realized by Davies [22], showing that divergencies in the

heat capacity indicate the points where phase transitions occur. We follow Davies’ approach

in this work. From the fundamental equation (3.7) it is straightforward to compute the

heat capacity for the KN-AdS black hole:

C = T
∂S

∂T
=

MS

MSS
(3.14)

=
S
(

1
l2

+ π
S + π2Q2

S2

)(

3
l2

+ π
S − π2Q2

S2

)

− 4π4J2

S3

(

1
l2

+ π
S + π2Q2

S2

)

(

6
l2

+ π
S

)

−
(

π
S + 2π2Q2

S2

)(

3
l2

+ π
S − π2Q2

S2

)

+ 8π3

S2

(

πJ2

S2 − ST 2
)

Phase transitions are then determined by the roots of the denominator of C, i.e. MSS = 0.

On the other hand, for the curvature of the metric (3.13) to be a measure of the ther-

modynamic interaction in the KN-AdS black hole, it must reproduce the phase transitions

structure dictated by the heat capacity (3.14). To verify this property in an invariant

manner we compute the scalar curvature of the thermodynamic metric (3.13), and notice

that its denominator is given by

DR = 4(SMS + QMQ + JMJ)3(M2
QJ − MQQMJJ)3M2

SS , (3.15)

whereas the numerator is a rather cumbersome expression that can not be written in a

compact form. We see that the denominator is proportional to the determinant of the

metric (3.13). At first sight, the singular points of the heat capacity that are situated at

MSS = 0 correspond to true curvature singularities where the volume element vanishes.

However, this is valid only if the numerator of the scalar curvature does not eliminate the

zeros of the denominator. A numerical analysis shows that in fact the singularities of the

heat capacity coincide with the singularities of the scalar curvature. We first fix the value

of the cosmological constant and the entropy in such a way that we get for the charge and

angular momentum an interval where the heat capacity diverges. The same process is then

repeated for different combinations of values for the cosmological constant and entropy. As

a result we find all the intervals where divergences occur. Around the divergent points of

the heat capacity we then investigate the behavior of the thermodynamic scalar curvature

and confirm that it becomes singular. We also noticed that the singular points coincide

with the zeros of MSS so that in fact the curvature singularities are situated at the points

where phase transitions take place. The characteristic behavior of the heat capacity and

curvature is depicted in figures 1 and 2.

In contrast to the above analysis, where the cosmological constant Λ has been treated

as a fixed background parameter, it is possible to raise Λ at the level of an intrinsic

parameter of the black hole and to consider it as an extensive thermodynamic variable [14].

This is an interesting possibility that follows from the Kaluza-Klein reduction of certain

supergravity theories which are relevant in M-theory [23]. In GTD this possibility can easily

be handled. In fact, in this case the phase space is 9-dimensional with coordinates ZA =
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J
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0

2000

0.040.020-0.04

6000

4000

-2000

-0.02-0.06

J

R

0.04

1E9

2.5E9

1.5E9

0.020

5E8

-0.04 -0.02 0.06

2E9

0
-0.06

Figure 1: Characteristic behavior of the

heat capacity C in terms of the angular mo-

mentum J . The chosen values are Λ = −1,

S = 1, and Q = 0.01. The divergencies indi-

cate points of phase transitions.

Figure 2: The thermodynamic scalar cur-

vature R in terms of the angular momentum

J . The values of the remaining parameters

are as in figure 1. The singularity is located

at the point of phase transition.

{M,S,Q, J,Λ, T, φ,Ω, L}, where L is the intensive coordinate dual to Λ. The construction

of the Riemannian structure in T is straightforward, according to eq. (2.3). Furthermore,

the coordinates of the space of equilibrium states can be chosen as Ea = {S,Q, J,Λ} so

that the corresponding thermodynamic metric becomes

g = (SMS + QMQ + JMJ + ΛMΛ)











−MSS 0 0 0

0 MQQ MQJ MQΛ

0 MQJ MJJ MJΛ

0 MQΛ MJΛ MΛΛ











. (3.16)

The scalar curvature of this metric is again singular at the roots of MSS = 0 so that, in

principle, it can reproduce the structure of the phase transitions of the KN-AdS black hole.

4. Reissner-Nordström-AdS black hole in arbitrary dimensions

For a spacetime with arbitrary dimension D, the Einstein-Maxwell action with cosmological

constant can be written as

S
EM

=
1

16π

∫

MD

dDx[−det(gµν)]1/2

[

R − FµνFµν +
(D − 1)(D − 2)

l2

]

, (4.1)

where l is the characteristic length of the AdS background that determines the cosmological

constant by

Λ = −(D − 1)(D − 2)

2l2
. (4.2)
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Then the metric for the RN-AdS black hole may be written in static coordinates as [24, 25]

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
D−2 , (4.3)

where dΩ2
D−2 is the metric on the unit (D−2)−sphere. The function f(r) can be expressed

as

f(r) = 1 − µ

rD−3
+

q2

r2(D−3)
+

r2

l2
, (4.4)

where µ and q are intrinsic parameters related to the mass and charge of the black hole.

This is an exact solution of Einstein-Maxwell equations with electromagnetic potential

At = −
[

D − 2

2(D − 3)

]1/2 q

rD−3
. (4.5)

The outer horizon is situated at r = r+ where r+ is the largest root of the equation

f(r) = 0. From this algebraic equation it follows that

µ = rD−3
+ +

q2

rD−3
+

+
rD−1
+

l2
. (4.6)

Furthermore, the horizon area is given by

A = ω
D−2

rD−2
+ , (4.7)

where ω
D−2

= 2π(D−1)/2/Γ[(D − 1)/2] is the volume of the unit (D − 2)−sphere. The cal-

culation of the physical mass and charge can be carried out either by using an appropriate

generalization of the Arnowitt-Deser-Misner (ADM), which includes the case of asymp-

totically anti-de Sitter spacetimes [26, 27], or by using as a guide the laws of black hole

thermodynamics [15]. The resulting quantities can be written as

M =
(D − 2)ω

D−2

16π
µ Q =

[2(D − 2)(D − 3)]1/2ω
D−2

8π
q . (4.8)

After some algebraic manipulations which involve the expressions given above for horizon

area in the form S = A/4, the mass, charge, and the parameter µ, we obtain

M =
(D − 2)ω

D−2

16π

(

4S

ω
D−2

)
D−1

D−2

[

1

l2
+
(ω

D−2

4S

)
2

D−2

+
2π2Q2

(D − 2)(D − 3)S2

]

. (4.9)

This is the fundamental equation for the RN-AdS black hole in arbitrary dimensions. In

the special case D = 4 we recover the expression obtained in the last section. From the

fundamental equation it is easy to derive all important thermodynamic variables. So we

obtain the temperature

T =
∂M

∂S
=

1

4π

(

4S

ω
D−2

)
1

D−2

[

(D − 1)

l2
+ (D − 3)

(ω
D−2

4S

)
2

D−2 − 2π2Q2

(D − 2)S2

]

, (4.10)

the electric potential,

φ =
∂M

∂Q
=

πQ

(D − 3)S

(

4S

ω
D−2

) 1

D−2

, (4.11)
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and the heat capacity

C = T
∂S

∂T
=

MS

MSS
=

(D − 2)S

[

D−1
l2

+ (D − 3)
(

ω
D−2

4S

) 2

D−2 − 2π2Q2

(D−2)S2

]

D−1
l2

− (D − 3)
(

ω
D−2

4S

)
2

D−2

+ 2(2D−5)π2Q2

(D−2)S2

. (4.12)

These thermodynamic variables are then considered as independent quantities at the level

of the 5-dimensional thermodynamic phase space T which can be coordinatized by ZA =

{M,S,Q, T, φ}. The Riemannian structure of T is determined in this case by the metric

G = (dM − TdS − φdQ)2 + (TS + φQ) (−dTdS + dφdQ) . (4.13)

The space of equilibrium states E can be chosen as being determined by the simple map-

ping ϕ : {S,Q} 7→ {M(S,Q), S,Q, T (S,Q), φ(S,Q)}, where the explicit dependence of the

intensive variables is as given above. The thermodynamic metric on E can be computed

by means of the pullback g = ϕ∗(G) that yields

g = (SMS + QMQ)

(

−MSS 0

0 MQQ

)

. (4.14)

As for the corresponding scalar curvature, we have performed an exhaustive analysis of

the singularities and obtained a behavior similar to that of the heat capacity. Figures 3

and 4 show a characteristic example of the singular behavior of the heat capacity and the

thermodynamic curvature. Our analysis shows that the curvature singularities reproduce

the structure of the phase transitions of the Reissner-Nordström black hole in arbitrary

dimensions.

5. Kerr-AdS black hole in arbitrary dimensions

In an arbitrary spacetime of dimension D, the Kerr-anti de Sitter metric is an exact solution

to the equations Rµν + (D − 1)l−2gµν = 0, which in Boyer-Lindquist coordinates can be

expressed as [13]

ds2 = −W

(

1 +
r2

l2

)

dt2 +
2m

U

(

Wdt −
N
∑

i=1

aiµ
2
i

Ξi
dφi

)2

+

N
∑

i=1

r2 + a2
i

Ξi
µ2

i dφ2
i (5.1)

+
U

V − 2m
dr2 +

N+ǫ
∑

i=1

r2 + a2
i

Ξi
dµ2

i −
1

l2W

(

1 +
r2

l2

)−1
(

N+ǫ
∑

i=1

r2 + a2
i

Ξi
µidµi

)2

,

where N = [(D − 1)/2] is the maximum number of independent rotational parameters ai

in N independent, orthogonal 2-planes, m is a parameter related to the total mass of the

black hole, the parameter ǫ is defined as ǫ = (D − 1) mod 2, t is the time coordinate, r

is the radial coordinate, φi are N different azimuthal angles, and µi are (N + ǫ) direction

– 10 –
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Figure 3: The heat capacity C as a function

of the charge Q for the 10-dimensional RN-

AdS black hole. Here Λ = −1 and S = 100.

Phase transitions are clearly seen as diver-

gencies of C.

Figure 4: The scalar curvature R for the

thermodynamic metric (4.14) as a function

of the charge Q. The values of the remaining

parameters are as in figure 3. The locations

of curvature singularities and phase transi-

tions coincide.

cosines. Moreover, the functions appearing in the metric are

W =
N+ǫ
∑

i=1

µ2
i

Ξi
,

U = rǫ
N+ǫ
∑

i=1

µ2
i

r2 + a2
i

N
∏

j=1

(r2 + a2
j ) , (5.2)

V = rǫ−2

(

1 +
r2

l2

) N
∏

i=1

(r2 + a2
i ) ,

Ξi = 1 − a2
i

l2
. (5.3)

The outer horizon is situated at the radial distance r = r+, where r+ is the largest positive

root of the algebraic equation

rǫ−2
+

(

1 +
r2
+

l2

) N
∏

i=1

(r2
+ + a2

i ) − 2m = 0 , (5.4)

which once solved can be used to find explicitly the value of the entropy S = A/4. As in

the previous cases, the presence of the cosmological constant requires especial care for the

determination of the physical parameters. Let us denote by M the physical mass of the

black hole and by Ji the momentum corresponding to the angular velocity Ωi, measured

by a non-rotating observer at infinity. Using as a guide the laws of thermodynamics, it can

– 11 –
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be shown that [15]

M =
mω

D−2

4π

(

N
∏

i=1

Ξi

)−1




N
∑

j=1

1

Ξj
− 1

2



 , S =
ω

D−2

4r+

N
∏

i=1

r2
+ + a2

i

Ξi
, for odd D ,

(5.5)

M =
mω

D−2

4π

(

N
∏

i=1

Ξi

)−1 N
∑

j=1

1

Ξj
, S =

ω
D−2

4

N
∏

i=1

r2
+ + a2

i

Ξi
, for even D ,

(5.6)

Ji =
maiωD−2

4πΞi





N
∏

j=1

Ξj





−1

, for arbitrary D . (5.7)

The next step is the derivation of a Smarr-like formula which relates all the physical

parameters entering the metric, i.e. M = M(S, Ji) or equivalently S = S(M,Ji). To this

end it is necessary to express the outer radius r+ in terms of the physical parameters. In

case this is possible, we first select a representation for the construction of GTD. Let us

consider the M−representation. Then, the extensive thermodynamic variables are S and

Ji. If we denote by T and Ωi the corresponding dual intensive thermodynamic variables,

the coordinates of the phase space T can be chosen as ZA = {M,S, Ji, T,Ωi} so that

dim(T ) = 3+2[(D−1)/2], when the maximum number of angular momenta is considered.

The Riemannian structure of T is completed with the metric

G =

(

dM − TdS −
N
∑

i=1

ΩidJi

)2

+

(

ST +
N
∑

i=1

ΩiJi

)(

−dSdT +
N
∑

i=1

dΩidJi

)

. (5.8)

The Riemannian submanifold of equilibrium states E is defined by means of the smooth

mapping ϕ : {S, Ji} 7−→ {M(S, Ji), S, Ji, T (S, Ji),Ωi(S, Ji)}, which induces the first law of

thermodynamics dM = TdS +
∑N

i=1 ΩidJi and the (N + 1)−dimensional metric

g =

(

SMS +

N
∑

i=1

JiMJi

)











−MSS 0 0 0

0 MJ1J1
. . . MJ1JN

0 . . . . .

0 MJN J1
. . . MJNJN











. (5.9)

It is straightforward to see that the curvature scalar of this thermodynamic metric contains

the term
(

SMS +

N
∑

i=1

JiMJi

)N

[det(Mij)]
NM2

SS (5.10)

in its denominator, where Mij = ∂2M/(∂Ji∂Jj), so that curvature singularities could

appear at the points where the condition MSS = 0 is satisfied. On the other hand, as

mentioned above, in the mass representation the heat capacity can be expressed as C =

MS/MSS . It follows then that phase transitions that occur when the heat capacity diverges,

could be represented as curvature singularities of the thermodynamic metric. This holds, of
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course, only if the expressions appearing in the numerator of the curvature do not eliminate

the zeros of MSS . We note that in (5.10) the term in round brackets cannot be zero because

it can be shown to be proportional to the total mass M as a result of Euler’s identity. As

for the determinant of Mij , its zeros, if any, can be found only if the fundamental equation

M = M(S, Ji) can be written explicitly.

The determination of the fundamental equation turns out to be a non-trivial problem.

In fact, one way to determine it is to compute the solutions of the algebraic equation (5.4)

which, in general, is a polynomial of order D in r+. We were not able to find explicit

solutions. However, the case of vanishing cosmological constant (l2 → ∞) and only one

non-vanishing rotational parameter, say, a1 = a, can be manipulated explicitly. From

eqs. (5.4)– (5.7), we obtain for this specific case

(r2
+ + a2)rD−5

+ − 2m = 0 , (5.11)

M =
mω

D−2

4π
(D/2 − 1) ,

S =
ω

D−2

4
(r2

+ + a2)rD−4
+ ,

J =
maω

D−2

4π
. (5.12)

A straightforward manipulation of these equations results in the expression

M =
D/2 − 1

π

(ω
D−2

2D

)
1

D−2

S
D−3

D−2

(

1 + 4π2 J2

S2

)
1

D−2

, (5.13)

which constitutes the corresponding fundamental equation. In turn, the heat capacity can

be expressed as

C = −(D − 2)S
[

3S2 + 20π2J2 − D(S2 + 4π2J2)
] (

S2 + 4π2J2
)

3S4 + 24π2J2S2 + 240π4J4 − D(S4 + 48π4J4)
. (5.14)

The corresponding thermodynamic metric of the space of equilibrium states reduces to the

2-dimensional metric

g = (SMS + JMJ)
(

−MSSdS2 + MJJdJ2
)

, (5.15)

independently of the dimension D. The expression for the scalar curvature cannot be

transformed into a compact form. Only the denominator can be shown to contain the

expression

(D − 3)[3S4 + 24π2J2S2 + 240π4J4 − D(S4 + 48π4J4)]2 , (5.16)

which determines the phase transition structure of the heat capacity (5.14). To see that

the singular behavior of the scalar curvature coincides with that of the heat capacity we

perform a detailed numerical analysis of both expressions. The characteristic singular

behavior is depicted in figures 5 and 6. For all analyzed regions a similar behavior was

detected, showing that in fact the points where phase transitions occur are characterized

by curvature singularities of the thermodynamic metric.
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Figure 5: The heat capacity C as a func-

tion of the angular momentum J for the 10-

dimensional Kerr black with one rotational

parameter. Here Λ = 0 and S = 100.

Figure 6: The scalar curvature R for the

thermodynamic metric (5.15) as a function

of the angular momentum J . The remaining

parameters are chosen as in figure 5.

6. The role of statistical ensembles

In the above applications of GTD of black holes, the starting point of the analysis is the

fundamental thermodynamic equation. Nevertheless, it is known that the thermodynamic

properties of black holes can drastically depend on the choice of statistical ensemble [14,

24, 25, 32]. The fact that different ensembles lead to different heat capacities implies that

the phase transitions structure depends on the statistical model under consideration. The

question arises whether GTD is able to correctly handle this dependence. We will show in

this section that the answer is in the affirmative. For the sake of concreteness and simplicity

we will show this in the explicit example of the RN-AdS black hole in D = 4.

Let us first consider the canonical ensemble which is characterized by a fixed charge.

In this case, according to eqs. (4.9)–(4.11), the relevant thermodynamic variables can be

expressed as

M =
r+

2

(

1 +
Q2

r2
+

+
r2
+

l2

)

, T =
1

4π

(

1

r+
− Q2

r3
+

+
3r2

+

l2

)

, φ =
Q

r+
. (6.1)

where we have used the relation S = πr2
+. Then, the heat capacity CQ = (∂M/∂T )Q

becomes

CQ = 2πr2
+

[

3r4
+ + l2(r2

+ − Q2)

3r4
+ − l2(r2

+ − 3Q2)

]

. (6.2)

The analysis of this case in the context of GTD can be carried out as in section 4.

The metric G of the phase space T is given by (4.13), whereas the metric g of the space of
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equilibrium states E coincides with (4.14) and can be written explicitly as

g = (SMS + QMQ)
(

−MSSdS2 + MQQdQ2
)

=
3r4

+ + l2(3Q2 + r2
+)

4l2r2
+

[

−3r4
+ + l2(3Q2 − r2

+)

8π2l2r4
+

dS2 + dQ2

]

. (6.3)

This metric determines the geometric properties of the manifold E . In particular, the

curvature scalar can be expressed in the compact form

R = − 48l4r4
+N (r+, Q)

[3r4
+ + l2(r2

+ + 3Q2)]3[3r4
+ − l2(r2

+ − 3Q2)]2
, (6.4)

where

N (r+, Q) = 3l4Q4(2l2−21r2
+)−3l2r2

+Q2(2l4−5l2r2
++6r4

+)−r6
+(2l4 +3l2r2

+−45r4
+). (6.5)

The curvature singularities are then given by the zeros of the equation

3r4
+ − l2(r2

+ − 3Q2) = 0 (6.6)

which are also the blow-up points of the heat capacity (6.2). This shows that in the

canonical ensemble approach the structure of the phase transitions coincides with the

singular structure of the thermodynamic curvature.

We now consider the grand canonical ensemble that corresponds to a fixed electric po-

tential φ. To obtain the grand canonical potential one can use the Euclidean action method

as in [25] or, equivalently, apply a Legendre transformation as in [32] which interchanges

the role of the variables Q and φ. That is to say, one introduces a new thermodynamic

potential M̃ by means of the Legendre transformation

M̃ = M − φQ . (6.7)

In [32], the potential M̃ is interpreted as the internal energy. Then, from eq. (6.1) we

obtain

M̃ =
r+

2

(

1 − φ2 +
r2
+

l2

)

. (6.8)

On the other hand, calculating the total differential of M̃ and using the first law of ther-

modynamics, we obtain dM̃ = TdS − Qdφ so that the dual thermodynamic variables

T = ∂M̃/∂S and Q = −∂M̃/∂φ can be written as

T =
1

4πr+

(

1 − φ2 +
3r2

+

l2

)

, Q = φr+ . (6.9)

Furthermore, it is straightforward to calculate the heat capacity

Cφ =

(

∂M̃

∂T

)

φ

= 2πr2
+

[

3r2
+ + l2(1 − φ2)

3r2
+ − l2(1 − φ2)

]

. (6.10)
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Hence, the blow-up points that determine the phase transitions structure coincide with the

solutions of the equation

3r2
+ − l2(1 − φ2) = 0 . (6.11)

We now analyze the case of the grand canonical ensemble in GTD. The new ther-

modynamic potential is M̃ = M̃(S, φ) so that the coordinates in the phase space T are

ZA = {M̃,Ea, Ia} = {M̃ , S, φ, T,−Q}. Then, the fundamental contact form can be writ-

ten it its canonical form as Θ = dM̃ − TdS + Qdφ. The particular metric (2.3) we are

using here for the geometry of the manifold T takes the form

G =
(

dM̃ − TdS + Qdφ
)2

− (ST − φQ)(dSdT + dφdQ) . (6.12)

The submanifold E of equilibrium states with coordinates Ea = {S, φ} is defined by means

of the smooth map ϕ : E −→ T that in this case implies the explicit dependence

ϕ : {Ea} 7−→ {ZA(Ea)} =

{

M̃(S, φ), S, φ, T =
∂M̃

∂S
,−Q =

∂M̃

∂φ

}

. (6.13)

In turn, the geometric properties of E are described by the metric g = ϕ∗(G) which becomes

g =
(

SM̃S + φM̃φ

)(

−M̃SSdS2 + M̃φφdφ2
)

= −3r2
+ − l2(5φ2 − 1)

4l2

[

3r2
+ − l2(1 − φ2)

8π2l2r2
+

dS2 + r2
+ dφ2

]

(6.14)

A straightforward calculation of the scalar curvature for this metric yields

R = − 16l4N (r+, φ)

r2
+[3r2

+ − l2(5φ2 − 1)]3[3r2
+ − l2(1 − φ2)]2

, (6.15)

where

N (r+, φ) = 5l4φ4(l2 +24r2
+)+3l2r2

+φ2(60r2
+ − 47l2)+3(l6 + l4r2

+ − 6l2r4
+ +36r6

+) . (6.16)

From the denominator of this expression and eq. (6.11), we conclude that there exist

curvature singularities at those points where the heat capacity Cφ blows up. There is an

additional term in the denominator which under the condition 3r2
+ − l2(5φ2 − 1) = 0 can,

in principle, lead to curvature singularities. However, it can easily be seen that this term

is proportional to the conformal factor of the metric, i. e., SM̃S + φM̃φ, which in turn,

according to Euler’s identity, is proportional to the internal energy M̃ of the black hole.

This seems to prohibit the appearance of additional singularities.

We conclude that GTD can handle correctly the different thermodynamic schemes that

follow from different statistical ensembles for the RN-AdS black hole in D = 4. Similar

analysis can be performed for other types of black holes and we expect similar results. The

fact that in general the denominator of the scalar curvature contains the denominator of

the heat capacity is an indication that, even in the case of different statistical ensembles,

there exists a correspondence between singular points of the heat capacity and curvature

singularities.
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7. Discussion and conclusions

The main result of this work is that in the space of equilibrium states of all known asymp-

totically anti-de Sitter black holes in arbitrary dimensions there exists a thermodynamic

metric whose curvature is singular at those points where phase transitions of the heat ca-

pacity occur. This has been shown by considering a particular metric in the thermodynamic

phase space, and applying the formalism of geometrothermodynamics. An important prop-

erty of our choice of thermodynamic metric is that it is invariant with respect to Legendre

transformations so that the properties of our geometric description of thermodynamics are

independent of the choice of thermodynamic potential and representation.

The explicit examples considered in this work include the Reissner-Nordström black

holes and the Kerr black holes on an anti-de Sitter background in arbitrary dimensions

(D ≥ 4). In the last example, we were able to explicitly analyze only the case of one

rotational parameter with vanishing cosmological constant. The most general case of non-

vanishing cosmological constant and arbitrary number of rotational parameters leads to a

set of algebraic equations which we were not able to solve. Hence the fundamental ther-

modynamic equation cannot be written explicitly. Nevertheless, even in this general case

our results show that if the numerator of the resulting expression for the curvature scalar

does not cancel the zeros of the denominator, then the curvature singularities are situated

at those points where the heat capacity diverges, a fact that in ordinary thermodynamics

is considered as an indication of a phase transition. The four-dimensional Kerr-Newman

black hole on an anti-de Sitter background was also analyzed, obtaining similar results.

The Kerr-Newman-AdS black hole is not known in higher dimensions. Thus, the examples

considered in this work include all known higher dimensional solutions for black holes on

an anti-de Sitter background.

The starting point in our geometrothermodynamical analysis is the metric G of the

thermodynamic phase space. In this work we used the particular metric (2.3) which was

chosen such that the metric g of the space of equilibrium states takes the specific form (2.6),

whose determinant becomes proportional to ∂2Φ/∂E1∂E1. In fact, the use of the metric

ηab, instead of δab, in G guarantees that all non-diagonal terms of the form ∂2Φ/∂E1∂Ek,

with k 6= 1, vanish. Furthermore, it is known that the scalar curvature always contains

terms with the determinant of the metric in their denominator. It can therefore be expected

that there exist true curvature singularities at those points where ∂2Φ/∂E1∂E1 = 0. We

use in this work the M−representation, in which Φ = M , and choose E1 = S so that the

singularities are expected at ∂2M/∂S2 = MSS = 0. On the other hand, in this representa-

tion the heat capacity can be written as C = MS/MSS with divergencies at MSS = 0. For

all known asymptotically anti-de Sitter black holes we have shown that the remaining terms

of the thermodynamic scalar curvature do not cancel the zeros of MSS. Thus we conclude

that the curvature of the space of thermodynamic equilibrium states can be interpreted in

an invariant manner as a measure of the thermodynamic interaction. This is in contrast

with other studies [28, 29] where the curvature of the space of equilibrium states depends

on the choice of a specific representation so that, for instance, a flat thermodynamic metric

can be associated to a system with non-trivial thermodynamic interaction.
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In the case of the RN-AdS black hole in D = 4, we analyzed the different thermody-

namics which follow from the choice of different statistical ensembles. In particular, we

considered the canonical ensemble, with fixed charge Q, and the grand canonical ensemble,

with fixed electric potential φ. We obtained the corresponding heat capacities CQ and Cφ,

which lead to different phase transitions structures. According to our general procedure of

GTD for black holes, we constructed explicitly for both ensembles the corresponding phase

manifolds and the manifolds of equilibrium states. In both cases we obtained that the there

exists a correspondence between singular points of the heat capacity and curvature singu-

larities of the thermodynamic metric. We expect similar results in the analysis of more

general black holes. The fact that in general the denominator of the scalar curvature con-

tains the denominator of the heat capacity is an indication that GTD can handle correctly

the different thermodynamic schemes that follow from different statistical ensembles.

Legendre invariance is an important element of our approach. It limits the number

of metrics that can be used to describe ordinary thermodynamics in terms of geometric

concepts. It is also essential in order to obtain results that are independent of the choice of

extensive variables and thermodynamic potential. A different point of view, in which for

a given thermodynamic system there exists a preferred thermodynamic potential [30, 31],

is necessary in order to explain the vanishing of Ruppeiner’s thermodynamic curvature in

cases where thermodynamic interaction is present as, for instance, in Reissner-Nordström

black holes. We believe that ordinary thermodynamics, which is Legendre invariant, must

not be changed when one tries to represent it in terms of geometric concepts.

The computer algebra system REDUCE 3.8 was used for most of the calculations

reported in this work.
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